DB Design
Guidelines

e Learning Materials

e RDBMS Best Practices



Learning Materials

e Next Level Database Techniques for Developers


https://kb.alphaobs.com/attachments/48

RDBMS Best Practices

There are 2 aspects that we need to be cognisant of while designing any relational database:

e Data storage
e Data retrieval

Both aspects have their own best practices to ensure the database is designed in a way that is
most efficient to not only store but also retrieve data.

Data Storage:

o Data storage is the primary purpose of any database, however, WHAT data we
need to store in it is the question that we need to answer every time while creating
a table or column.

o What to store: As a general guideline, only data that NEEDS to be persisted
across user sessions and across user activities should be stored. Any data
which is relevant only for the user's current session or current activity need not be
stored in the database. A good example for this is storing user preference of Ul
theme. In most cases, we don't want to store the user's preferred theme in the db
but only keep it on the frontend for the user to experience either "Light Mode" or
"Dark Mode". On the other hand, something like user's transactions or interactions
with other users are a very important data point to be stored in the db.

o File storage: No files should ever be stored in the db. It's a very common
malpractice to store user's profile picture/thumbnail in the db using a BLOB data
type column. This is very vicious and can lead to database overloading very very
fast. Hence file storage should ALWAYS be kept separate from the database.

o Data types: Deciding data types for columns is also a very important consideration
that needs to be given due thought when designing a database. A very bad practice
is to keep every column as a TEXT column or a VARCHAR regardless of what data is
going to be stored in that column. If you know it's going to be an ID that will be
saved in that column then why would you set it as a VARCHAR or TEXT? If you know
its going to be a simple status flag which will only have values as 0 or 1, then why
would you keep data type for that column as TEXT and not an ENUM or TINYINT?

o In depth knowledge of what the most common data types are, what each of them is
meant to do is very important. Implication of assigning a data type to a column is
also something that needs to be given due diligence, when the table grows and adds
millions of records a wrong data type can create all sorts of chaos. You can learn

more about it here.

o Splitting relevant data: Another important consideration while designing a
database structure is which data point should we keep in just 1 table and reference
using a JOIN or sub query as required. For example, if an application has a detailed


https://www.digitalocean.com/community/tutorials/sql-data-types

user profile feature then it might be a good idea to keep user profile data in a
separate table from user authentication data. What this will do is, since user
authentication table will be queried way more frequently that user profile, the user
profile queries will not be blocked because the authentication table is locked.
Similarly, a one-to-many relationship often requires an ID to stored as a foreign key
in another table, in such cases ensure that you don't store any other data points
from the first table in the second table.

o Data redundancy: Maintaining data integrity is also a very important aspect of
storing data properly in a database. Whenever a record is getting deleted, due
thought is to be given to identify if there are any child entities to that record. If there
are, then a decision needs to be made as to whether we should delete all child
entities or if we need any of those entities then should we do a soft delete of the
parent entity. There should never be orphan data in the database. If you are
deleting an entity, make sure all related entries are deleted as well and if
you are soft deleting an entity, make sure all other related entries are soft
deleted as well.

Data retrieval:

o Indexing: Indexes improve query performance by allowing the database to quickly
locate rows based on the indexed columns. To decide which columns to index, check
the WHERE and JOIN clauses in your queries. Indexes are used mainly for filtering,
hence the columns which we are using in WHERE and JOIN clauses need to be
indexed. Also, in the case of JOIN, ensure you keep data type and length same for
both the columns that are being joined otherwise index will not work. Indexes also
don't work on TEXT data type columns so avoid using TEXT as data type unless the
column is going to hold a string that is user generated and we cannot be certain
about its max length.

o Write Efficient Queries: Select only necessary columns in a query avoid using
SELECT * as a default query practice. use filtering conditions to only retrieve data set
that is required. Avoid unnecessary joins as they are very resource intensive and can
cause multiple tables to lock until queries are resolved. As a rule of thumb, if you are
going to join 2 tables, always join them on columns that are indexed and have the
EXACT same data type, that way the performance will be much better.

o Avoid SELECT DISTINCT: Minimize resource usage by using filtering conditions
instead of DISTINCT. SELECT DISTINCT is very resource intensive and its
recommended to avoid using it.

o Limit Result Set: Never return huge chunks of data in any query, especially from
large tables. Use pagination (LIMIT/OFFSET) for manageable data chunks to be
retrieved and sent to the frontend.

o Cleanup Indexes: Regularly monitor and maintain index health. During the course
of development, its possible that new columns get added to a table which replace a
certain older column in the WHERE clause. In such cases, it's important to clean up
indexes on such columns as unused indexes will hamper WRITE performance of the
database.

o Secure Queries: Prevent SQL injection with parameterized queries or prepared
statements. Always write queries using query builders so as to protect the



application against SQL injection attacks. For complex queries where query builders
are not useful, ensure the input is sanitised and that the input does not contain any
HTML tags or SQL syntax before being passed into the queries.

Optimize Network Usage: Minimize data transferred between server and
application. This best practice is particularly useful when there are bulk operations
that need to be performed on the database. We should try to minimize the number
of times our application connects to the database. For example, if you want to insert
100 records in the database instead of writing insert query in a loop and connecting
to the database 100 times, you can bulk insert 100 records using the bulk insert
syntax and connect to the database only once.



