PHP Laravel Directory
Structure Best Practices

Laravel is a popular PHP framework that comes with a well-defined directory structure in itself.
Here are some best practices for structuring PHP Laravel projects:

1. Follow the Default Structure: Laravel provides a default directory structure that aligns with
industry best practices. Stick to this structure as it's widely recognized and understood by the
Laravel community. There is no point in reinventing the wheel!

2. Division of Code by Type:

- Routes: Define routes in the routes directory, keeping them organized by functionality. For
example, create a file “'web.php" file for web routes and “api.php” for API routes.

- Models: Models are meant to be used for database-related operations and hence all queries
should be driven from models.

- Controllers: Controllers are the bridge connecting the data and the views. Hence, all exchange
between the database (i.e. models) and views should be done using Controllers.

- Views: Views are supposed to be the dumbest part of the application in the sense that there
should be absolutely no logic placed in them. They should just render whatever data the controller
gives them. Keep views in the “resources/views" directory.

- Middleware: Store custom middleware classes in the “app/Http/Middleware™ directory. These
classes are very useful to apply a system wide security and authentication mechanism.

4. Configuration Files: Keep configuration files in the “config™ directory. You can publish vendor
configurations using “php artisan vendor:publish™. Laravel comes with prebuilt support for .env files
and hence all environment specific configuration values should always be kept in the env file.

5. Database Migrations and Seeders: Database migrations and seeders are very important to
setup database for the application in the event of a fresh deployment. Storing database migration
files in the “database/migrations™ directory and seeders in “database/seeders” directory can allow
us to easily setup the necessary database structure and initialisation data that is required by the
application.

6. Localisation and Translations: Most applications these days are supporting multiple
languages i.e. internationalisation, to easily show different strings based on the preferred language
of the user, store language files in the "resources/lang” directory.

7. Assets (CSS, JavaScript, Images): Place your assets in the "public’ directory organised by
type (css, js, images).



8. Jobs and Queues: Laravel comes with inbuilt capability for executing cron jobs and background
processes unlike most other PHP frameworks. You can store your cron job classes in the "app/Jobs’
directory and organise them by functionality. You can also use queues for background processing.

9. Dependency Management: Laravel uses Composer to manage project dependencies. Keep
the “composer.json” file up-to-date and version-controlled. Ensure no files are ever directly
changed/manipulated in the “vendor" directory.

10. Artisan Commands: Although the default artisan commands are enough to perform almost
all necessary operations, if there is a need for you to creating custom Artisan commands, place
them in the “app/Console/Commands’ directory.

11. Documentation: It's very important to have a simple documentation file such as a
"README.md" to explain the purpose of different directories, how to set up the project on local,
and any specific guidelines to deploy and get the project running on a server.

12. Version Control: Always use a version control system like Git to manage your project. Make
sure to include a ".gitignore" file to exclude unnecessary files from version control. As a rule of
thumb, all user generated content like uploaded files etc. should be placed in gitignore as well as
all external dependencies (node_modules, vendor, etc.) that we can easily download with package
managers should be excluded from the git repo as well.

Remember, the key is to maintain consistency and make it easy for yourself and other developers
to understand the structure of your project. As your project evolves, periodically review and
refactor your file structure to ensure it remains organised and scalable. Also, spend some time
every month to clean up unnecessary code, files and assets from the project so the technical debt
never gets overwhelming as the project grows.

Revision #1
Created 21 August 2023 04:30:22 by Nilesh Rathour
Updated 21 August 2023 04:45:51 by Nilesh Rathour



