
Creating a well organized directory structure is crucial for maintaining the readability and
scalability any project. In this series of articles, we will be highlighting best practices for
maintaining directory structure for applications built using different technologies.

PHP Codeigniter Directory Structure Best Practices
PHP Laravel Directory Structure Best Practices

Application
Directory Structure
Guidelines



Here are some best practices to follow when structuring your PHP CodeIgniter project:

1. Use the Default Structure: Just like any other framework, CodeIgniter provides a default
directory structure that's designed to help you organise your project efficiently. Stick to this
structure as it follows industry standards and makes it easier for other developers familiar with
CodeIgniter to understand your project.

2. Division of Code by Type:
   - All pieces of code are meant to perform different functions in a project and as such, they should
be placed in their relevant place so everyone knows how to access any part of the codebase.
   - Models: Models are meant to be used for database-related operations and hence all queries
should be driven from models.
   - Controllers: Controllers are the bridge connecting the data and the views. Hence, all exchange
between the database (i.e. models) and views should be done using Controllers.
   - Views: Views are supposed to be the dumbest part of the application in the sense that there
should be absolutely no logic placed in them. They should just render whatever data the controller
gives them.
   - Libraries & Helpers: Code duplication is a sin and must be avoided at all cost. Create custom
libraries and helpers for all functions/logical operations you need to perform in the code.
   - Constants: In any project there are global constants that we use across the project, all such
constants should be placed in the "constants.php" file in the config directory.

3. Modules or Features: Organise models, controllers, views and libraries by modules. For
example, all models related to the user module should be kept in one folder whereas all models
related to the subscriptions module should be kept in another folder, etc.

4. Autoloading: CodeIgniter supports autoloading, which can be very helpful in managing class
dependencies. If you know there are certain libraries that are going to be used across the
application in multiple places, you can utilise this feature to avoid manually including files in each
class.

5. Configuration Files: Keep configuration files (database, routes, etc.) separate from your code.
Use the config directory for these files. A very bad practice is to hardcode config variables in
models and controllers, avoid this at all costs.

6. Assets (CSS, JavaScript, Images): Create a directory for your assets, such as assets, and
subdivide it further by type (css, js, images). Keep all necessary assets for the project in this

PHP Codeigniter Directory
Structure Best Practices



directory and nowhere else.

7. Routes: Define your custom routes in the config/routes.php file. Keep the routes organised by
module and make sure there are ample comments in the file for better understanding.

8. Error Handling and Logging: Set up proper error handling and logging mechanisms. As a rule
of thumb, error display should be turned off on production but error logging should never be
disabled. The default logs directory that CodeIgniter provides is sufficient to achieve this.

9. Localisation and Language Files: Most applications these days are supporting multiple
languages i.e. internationalisation, to easily show different strings based on the preferred language
of the user, organise language files in the language directory.

10. Namespaces: If you're using PHP namespaces, follow a consistent naming convention and
directory structure that mirrors the namespaces. For example, if you are creating a model for
managing the users module under the directory models/Users then its better to call it
UsersModel.php than UserModel.php or User.php etc.

11. Documentation: It's very important to have a simple documentation file such as a
`README.md` to explain the purpose of different directories, how to set up the project on local,
and any specific guidelines to deploy and get the project running on a server.

12. Version Control: Always use a version control system like Git to manage your project. Make
sure to include a `.gitignore` file to exclude unnecessary files from version control. As a rule of
thumb, all user generated content like uploaded files etc. should be placed in gitignore as well as
all external dependencies (node_modules, vendor, etc.) that we can easily download with package
managers should be excluded from the git repo as well.

 

Remember, the key is to maintain consistency and make it easy for yourself and other developers
to understand the structure of your project. As your project evolves, periodically review and
refactor your file structure to ensure it remains organised and scalable. Also, spend some time
every month to clean up unnecessary code, files and assets from the project so the technical debt
never gets overwhelming as the project grows.



Laravel is a popular PHP framework that comes with a well-defined directory structure in itself.
Here are some best practices for structuring PHP Laravel projects:

1. Follow the Default Structure: Laravel provides a default directory structure that aligns with
industry best practices. Stick to this structure as it's widely recognized and understood by the
Laravel community. There is no point in reinventing the wheel!

2. Division of Code by Type:
   - Routes: Define routes in the routes directory, keeping them organized by functionality. For
example, create a file `web.php` file for web routes and `api.php` for API routes.
   - Models: Models are meant to be used for database-related operations and hence all queries
should be driven from models.
   - Controllers: Controllers are the bridge connecting the data and the views. Hence, all exchange
between the database (i.e. models) and views should be done using Controllers.
   - Views: Views are supposed to be the dumbest part of the application in the sense that there
should be absolutely no logic placed in them. They should just render whatever data the controller
gives them. Keep views in the `resources/views` directory.
   - Middleware: Store custom middleware classes in the `app/Http/Middleware` directory. These
classes are very useful to apply a system wide security and authentication mechanism.

4. Configuration Files: Keep configuration files in the `config` directory. You can publish vendor
configurations using `php artisan vendor:publish`. Laravel comes with prebuilt support for .env files
and hence all environment specific configuration values should always be kept in the env file.

5. Database Migrations and Seeders: Database migrations and seeders are very important to
setup database for the application in the event of a fresh deployment. Storing database migration
files in the `database/migrations` directory and seeders in `database/seeders` directory can allow
us to easily setup the necessary database structure and initialisation data that is required by the
application.

6. Localisation and Translations: Most applications these days are supporting multiple
languages i.e. internationalisation, to easily show different strings based on the preferred language
of the user, store language files in the `resources/lang` directory.

7. Assets (CSS, JavaScript, Images): Place your assets in the `public` directory organised by
type (css, js, images).

PHP Laravel Directory
Structure Best Practices



8. Jobs and Queues: Laravel comes with inbuilt capability for executing cron jobs and background
processes unlike most other PHP frameworks. You can store your cron job classes in the `app/Jobs`
directory and organise them by functionality. You can also use queues for background processing.

9. Dependency Management: Laravel uses Composer to manage project dependencies. Keep
the `composer.json` file up-to-date and version-controlled. Ensure no files are ever directly
changed/manipulated in the `vendor` directory.

10. Artisan Commands: Although the default artisan commands are enough to perform almost
all necessary operations, if there is a need for you to creating custom Artisan commands, place
them in the `app/Console/Commands` directory.

11. Documentation: It's very important to have a simple documentation file such as a
`README.md` to explain the purpose of different directories, how to set up the project on local,
and any specific guidelines to deploy and get the project running on a server.

12. Version Control: Always use a version control system like Git to manage your project. Make
sure to include a `.gitignore` file to exclude unnecessary files from version control. As a rule of
thumb, all user generated content like uploaded files etc. should be placed in gitignore as well as
all external dependencies (node_modules, vendor, etc.) that we can easily download with package
managers should be excluded from the git repo as well.

 

Remember, the key is to maintain consistency and make it easy for yourself and other developers
to understand the structure of your project. As your project evolves, periodically review and
refactor your file structure to ensure it remains organised and scalable. Also, spend some time
every month to clean up unnecessary code, files and assets from the project so the technical debt
never gets overwhelming as the project grows.


